RCC Structure - One Way Slab

Case Example:

A roof slab 3.5×8 meters, 160 mm thick is resting on a 250 mm thick wall all around. Consider Concrete grade M20, Steel grade Fe415, clear cover 15 mm. Short span 10 mm steel bar @ 150 mm c/c, Long span 8 mm steel bar @ 260 mm c/c. Add 1 kN/m^2 finish dead load, assume live load 4 kN/m^2 . Analyze the design.

Analysis:

Data:

Characteristic strength of concrete f_{ck} = 20 N/mm² = 20e3 kN/m² Yield strength of steel = 415 N/mm² = 415e3 kN/m²

A. Slab Factored Load:

- (i) DL = $0.16 \times 25 = 4.0 \text{ kN/m}^2$
- (ii) Finish load = $1kN/m^2$
- (iii) Total Dead load = 5 kN/m^2
- (iv) Live load = 4 kN/m^2
- (v) Factored load = $(DL + LL)*load factor = 13.5 kN/m^2$

B. Effective depth (d):

Slab thickness (160 mm) – clear cover (15 mm) – bar diameter (10mm)/2 = 140mm

C. Effective span:

- (i) Short span + wall thickness = 3.5 + 0.25 = 3.75 m
- (ii) Short span + effective depth = 3.5 + 0.14 = 3.64 m
- (iii) Clause 22.2 minimum of the above = 3.64 m

D. Moment and Shear Force Calculation (1m x 1m slab)

- (i) Total load = factored load x Effective span = 49.14 kN
- (ii) Applied Moment (Mu) = (Total load * Eff. Span) /8 = (49.14*3.64)/8 = 22.35 kNm
- (iii) Applied shear force (Vu)= Total load*eff.span/2 = 49.14/2 = 24.57 kN
- (iv) Moment capacity = $0.138 \, f_{ck} * b * d^2 = 0.138 * 20.0e3 * 1.0 * 0.14^2 = 54.1 \, kNm$ (greater than applied moment)
- (v) Shear force capacity = τ_c **b*** d = 0.27e3 * 1.0*0.14 = 37.8 kN (Refer table 19 IS 456:2000 for τ_c)
- (vi) Above moment and shear force capacity is for concrete failure. Moment and shear force applied should be less than respective capacities.

E. Steel Area - primary:

- (i) Calculate $x/d = 1.2 sqrt(1.2^2 6.6 \text{ Mu/f}_{ck}.b.d^2) = 1.2 \sqrt{(1.44 (6.6*22.35*10^6/(20*1000*140^2)))} = 0.1655$
- (ii) Lever arm $Z = d^*(1-0.416^*x/d) = 130.2$

- (iii) Steel area Ast = $Mu/(0.87*fy*Z) = 22.35*10^6/(0.87*415*130.2) = 475$ mm².
- (iv) Steel area provided 10 mm bar @ 150 mm $c/c = 523.33 \text{ mm}^2$

F. Steel area secondary (distribution) Clause 26.3.3

- (i) Spacing 3d or 300 mm which ever is minimum
- (ii) Not greater than 5d or 450 mm which ever is greater
- (iii) Minimum percent steel on either direction = $0.12*b*D/100.0 = 192 \text{ mm}^2$
- (iv) Steel provided 8 mm bar @ 260 mm $c/c = 193 \text{ mm}^2$

G. Control of Deflection: (Clause 23.2)

- (i) Span to effective depth (1/d) = 3.5*1000/140.0 = 26.0
- (ii) Percent steel Pst = 523*100/(140*1000) = 0.373%
- (iii) Find modification factor from Figure 4.0 IS 456 for the given percent steel and fs = 0.58*fy*Steel area required/Steel area provided = 0.58*415*475/523 = 218.0
- (iv) Modification factor from the graph found to be ≈ 1.5
- (v) L/D Permissible for simply support = 20x modification factor = 30.0
- (vi) Design L/D value is less than permissible hence design is safe.

H. Material Estimates

- (i) Concrete volume: 3.5*8.0*0.160(span area) + 6*0.160 (wall area) = 5.44 m³
- (ii) Cement quantity: M20 Volume of cement 1:5.5 = 5.44*1440/5.5 = 1424 kg
- (iii) Steel quantity: ϕ -10 mm x 186m length; ϕ 8 mm x 108 m length \cong 159 kg Add necessary allowances for wastage, shrinkage etc. to the above estimates.