RCC Structure - Staircase on Slab

Case Example:

Analyze the staircase design cast with the slab supported between beams c/c 4 meters. There are 16 steps with 270 mm Tread; 160 mm Rise; 250 mm Go; and minimum waist of 160 mm. Width of the staircase is 1.5 m and expected to carry a live load of $5 \, kN/m^2$. Consider M20 concrete grade, Fe415 grade 12 mm steel bars with 15 mm clear cover. Add 15 mm tread top finishing.

Analysis:

Data:

Characteristic strength of concrete f_{ck} = 20 N/mm² = 20e3 kN/m²

Yield strength of steel = $415 \text{ N/mm}^2 = 415e3 \text{ kN/m}^2$

Tread T = 270 mm

Rise R = 160 mm

Go G = 250 mm

Waist W = 160 mm

 $B = \sqrt{(R^2+G^2)} = \sqrt{(160^2+250^2)} = 297 \text{ mm}$

A. Slab Factored Load:

- (i) DL = $(1/G)(WB + RT/2)*25 = (1/0.25)(0.16*0.297+0.16*0.27/2)*25 = 6.912 \text{ kN/m}^2$
- (ii) Finish load = $0.015*T*25.0/G = 0.015*0.27*25/0.25 = 0.405 \text{ kN/m}^2$
- (iii) Total Dead load = $6.912 + 0.405 = 7.32 \approx 7.5 \text{ kN/m}^2$
- (iv) Live load = 5 kN/m^2
- (v) Factored load = $(DL + LL)*load factor = 18.75 kN/m^2$

B. Effective depth (d):

Waist (160 mm) – clear cover (15 mm) – bar diameter (12mm)/2 = 139 mm

C. Effective span:

- (i) Beam c/c L = 4 m
- D. Moment Calculation (meter width of stair)
 - (i) Applied Moment (Mu) = $(WL^2)/10 = 30 \text{ kNm}$
 - (ii) Applied shear force (Vu) = (WL/2) = 37.5 kN
 - (iii) Moment capacity = $0.138 f_{ck}*b*d^2 = 0.138*20.0e3*1.0*0.139^2 = 53.3 kNm$ (greater than applied moment)

E. Steel Area - primary:

- (i) Calculate $x/d = 1.2 sqrt(1.2^2 6.6 Mu/f_{ck}.b.d^2) = 1.2 \sqrt{(1.44 (6.6*30*10^6/(20*1000*139^2))} = 0.237$
- (ii) Lever arm $Z = d^*(1 0.416^*x/d) = 125.3 \text{ mm}$
- (iii) Steel area Ast = $Mu/(0.87*fy*Z) = 30*10^6/(0.87*415*125.2) = 663 \text{ mm}^2$.
- (iv) Steel area provided 12 mm bar @ 150 mm $c/c = 754 \text{ mm}^2$

- F. Steel area secondary (distribution) Clause 26.3.3
 - (i) Minimum percent steel = $0.12*b*D/100.0 = 192 \text{ mm}^2$
 - (ii) Steel provided 12 mm bar @ 250 mm $c/c = 452 \text{ mm}^2$
- G. Control of Deflection: (Clause 23.2)
 - (i) Span to effective depth (1/d) = 4*1000/139 = 29.0
 - (ii) Percent steel Pst = 754*100/(139*1000) = 0.54%
 - (iii) Find modification factor from Figure 4.0 IS 456 for the given percent steel and fs = 0.58*fy*Steel area required/Steel area provided = 0.58*415*663/754 = 212.0
 - (iv) Modification factor from the graph found to be ≈ 1.3
 - (v) L/D Permissible for simply support = 26x modification factor = 33.8
 - (vi) Design L/D value is less than permissible hence design is safe.
- H. Material Estimates /meter width of staircase
 - (i) Concrete volume: waist*slab Len*1 + steps = 0.76 m³
 - (ii) Cement quantity: M20 Volume of cement 1:5.5 = 0.76*1440/5.5 = 199 kg
 - (iii) Steel quantity: ϕ -12 mm x 50m length \approx 45 kg

Add necessary allowances for wastage, shrinkage etc. to the above estimates.